Ji-distributive Dually Quasi-de Morgan Linear Semi-heyting Algebras

نویسنده

  • HANAMANTAGOUDA P. SANKAPPANAVAR
چکیده

The main purpose of this paper is to axiomatize the join of the variety DPCSHC of dually pseudocomplemented semi-Heyting algebras generated by chains and the variety generated by D2, the De Morgan expansion of the four element Boolean Heyting algebra. Toward this end, we first introduce the variety DQDLNSH of dually quasi-De Morgan linear semi-Heyting algebras defined by the linearity axiom and the variety JIDSH of JI-distributive dually quasi-De Morgan semi-Heyting algebras, and present some properties thereof. We then give an explicit description of simple (= subdirectly irreducible) algebras in the variety JIDLNSH1 of JI-distributive dually quasi-De Morgan linear semi-Heyting algebras of level 1 by applying the results of [24] and [25], from which we deduce our main theorem that says that JIDLNSH1 is the join of the variety DPCSHC and the variety V(D2), solving the problem mentioned above. We give some applications of this theorem. First, it is shown that the lattice of nontrivial subvarieties of JIDLNSH1 is isomorphic to (ω + 1) × 2, where 2 is the 2-element chain. Then we present (small) bases for all of the subvarieties of JIDLNSH1. Finally, we show that all subvarieties of DPCSHC have the amalgamation property. The paper concludes with some open problems for further investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Dually Quasi

The variety DQD of semi-Heyting algebras with a weak negation, called dually quasi-De Morgan operation, and several of its subvarieties were investigated in the series [31], [32], [33], and [34]. In this paper we define and investigate a new subvariety JID of DQD, called “JI-distributive, dually quasi-De Morgan semi-Heyting algebras”, defined by the identity: x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z), as...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended ∨-De Morgan law introduced in [20]. Then, using this result and the results of [20], we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) in the variety o...

متن کامل

Generalized Priestley Quasi-Orders

We introduce generalized Priestley quasi-orders and show that subalgebras of bounded distributive meet-semilattices are dually characterized by means of generalized Priestley quasi-orders. This generalizes the well-known characterization of subalgebras of bounded distributive lattices by means of Priestley quasiorders (Adams, Algebra Univers 3:216–228, 1973; Cignoli et al., Order 8(3):299– 315,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015